Задача 1. а) Пусть f — односторонняя функция, вычисляемая за время n^c . Определим g как g(xy)=f(x)y, где |x|=m, $|y|\sim m^c$ для подходящего m (под ab имеется в виду конкатенация слов a и b). Заметим, что g можно вычислить за квадратичное время от входа. Покажем, что g односторонняя. Пусть это не так, пусть существует ее обратитель R, ошибающаяся с непренебрегаемой вероятностью $1-\frac{1}{p(n)}$ для бесконечно многих n. Тогда f тоже можно обратить. Действительно, определим ее обратитель Q как Q(u)=R(uv)[0:k] для случайного v подходящей длины, т.е. Q раздувает свой аргумент справа случайным образом и кормит полученное слово обратителью R, и у результата берется префикс длины k, где k — длина аргумента f. Тогда

$$\Pr_{x}\left\{f\left(Q(f(x))\right) = f(x)\right\} \ge \Pr_{xy}\left\{g\left(R(g(xy))\right) = g(xy)\right\} \ge \frac{1}{p(|xy|)} \ge \frac{1}{p(|xy|)}.$$

Полученное противоречие доказывает существование односторонней функции, вычислимой за квадрат (тем более и за куб) от длины входа.

б) Пронумеруем машины Тьюринга $M_1, M_2, ...$ так, чтобы длина описания n-й машины была полиномиальной от n. Пусть $M_n'(x)$ — результат работы $M_n(x)$ через $|x|^2$ шагов. Определим f как конкатенацию ответов этих усеченных машин:

$$f(x) = M'_1(x)M'_2(x) \dots M'_{|x|}(x).$$

Она работает за время $|x|^2 \cdot |x| = O(|x|^3)$. Пусть g какая-то односторонняя функция. Тогда некоторая машина M_N из нашего списка вычисляет g. Для всех аргументов, длины больше N, f(x) вычисляет g(x) для N-го бита ответа. Таким образом односторонность f следует из односторонности g.

Задача 2. а) В качестве f и g возьмем ту же сильно одностороннюю функцию. Тогда h=f=g — тоже сильно односторонняя.

- б) Если найдутся такие односторонние функции f, g, что $f(x) \oplus g(x) = x$, то, конечно h не будет даже слабо односторонней (для данного значения y можно будет применить \oplus к $y_1y_3y_5$... и $y_2y_4y_6$... и получить x, для которого h(x) = y).
- **Задача 3**. а) Докажем, что если f и g односторонние перестановки, то $f \circ g$ тоже односторонняя перестановка. Пусть это не так. Тогда существует эффективный алгоритм, находящий прообраз для $y = (f \circ g)(x)$, т.е. $x = (f \circ g)^{-1}(y)$ быстро вычисляется. Но ведь тогда и f легко обратить. Действительно, $f^{-1}(y) = g(x)$, где x эффективно вычисляется по нашему предположению, а g(x) по определению. Полученное противоречие доказывает, что $f \circ g$ односторонняя. Еще $f \circ g$ биекция, как композиция биекций, а значит и односторонняя перестановка.

Индукцией можно показать, что f^{n^c} перестановка и ее трудно обратить. Остается показать, что ее можно быстро вычислить. А это так, потому что f вычисляется за poly(n), а следовательно, f^{n^c} — за $n^c \cdot poly(n) = poly(n)$. Таким образом, f^{n^c} — односторонняя перестановка.

б) Пусть $f:\{0,1\}^n \to \{0,1\}^n$ — какая-то односторонняя функция, у которой аргумент и значение одной и той же длины (такая функция существует, если вообще односторонние функции существуют). Определим функцию $g:\{0,1\}^{2n} \to \{0,1\}^{2n}$ для |x|=|y|=n как

$$g(xy) = f(y)0^n.$$

Тогда, очевидно, g — односторонняя. С другой стороны, композиция $g(g(x)) = f(0^n)0^n$ — константа и не зависит от x, а значит легко обратима.

Задача 4. Докажем сразу более сильный второй пункт. Пусть f — односторонняя функция. Пусть S — подмножество области определения f размера $\alpha(|x|)$, например множество первых $\alpha(|x|)2^{|x|}$ слов длины |x|, отсортированных в лексикографическом порядке (в них входит также $0^{|x|}$). Определим

$$g(x) = \begin{cases} f(x), & x \notin S \\ x, & x \in S \end{cases}$$

Функция g удовлетворяет условиям задачи. Нужно только показать, что она односторонняя. Очевидно, g быстро вычисляется. Осталось доказать трудно обратимость. Пусть это не так и существует эффективный алгоритм R и полином p, для которых R обращает g с вероятностью $\geq 1/p(n)$ для бесконечно многих n. Заметим, что R успешно обращает y = g(x) при $x \notin S$:

$$\Pr\{g(R(y)) = x\} =$$

$$= \Pr\{g(R(y)) = x | x \notin S\} \cdot \Pr\{x \notin S\} + \Pr\{g(R(y)) = x | x \in S\} \cdot \Pr\{x \in S\} \le$$

$$\leq \Pr\{g(R(y)) = x | x \notin S\} + \Pr\{x \in S\} = \Pr\{g(R(y)) = x | x \notin S\} + \alpha(n),$$

откуда

$$\Pr\{g(R(y)) = x | x \notin S\} \ge \frac{1}{p(n)} - \alpha(n).$$

Покажем теперь, что f можно успешно обратить алгоритмом Q, совпадающим с R на $f(\bar{S})$ (на аргументах из f(S) алгоритм Q может возвратить что угодно):

$$\Pr\left\{f\left(Q(f(x))\right) = x\right\} \ge \Pr\left\{f\left(Q(f(x))\right) = x \middle| x \notin S\right\} \cdot \Pr\{x \notin S\} \ge$$
$$\ge \left(\frac{1}{p(n)} - \alpha(n)\right) \cdot \left(1 - \alpha(n)\right) \sim \frac{1}{p(n)}.$$

Получили, что f можно легко обратить, вопреки определению. Значит наше предположение неверно и g — односторонняя.

Задача 6. Пронумеруем вероятностные машины Тьюринга $M_1, M_2, ...$. Пусть p(.) — полином. В качестве Y_n берем равномерное распределение. Построим X_n . С этой целью рассмотрим следующие 2^n (p(n)-мерные) векторы: i-я координата вектора, соответствующего $x \in \{0,1\}^n$, равна $\Pr\{M_i(x)=1\}$ для i=1,...,p(n). Средний вектор m этих 2^n векторов лежит в их выпуклой оболочке. Значит по теореме Каратеодори из этих (экспоненциально многих) 2^n

векторов можно выбрать (полиномиальное количество) p(n)+1 векторов $m_1, ..., m_{p(n)+1}$ так, чтобы m также лежал в их выпуклой оболочке, т.е. для некоторых неотрицательных α_i с суммой 1 было верно $m=\alpha_1m_1+\cdots+\alpha_{p(n)+1}m_{p(n)+1}$. Пусть вектору m_i соответствует строка $x_i \in \{0,1\}^n$. Определим X_n следующим образом: $\Pr\{X_n=x_i\}=\alpha_i$. Тогда в силу равенства

$$\Pr\{M_i(X_n) = 1\} = \sum_{i=1}^{p(n)+1} \alpha_j \cdot \Pr\{M_i(x_j) = 1\} = \Pr\{M_i(Y_n) = 1\}$$

случайная величина X_n неотличима полиномиальными алгоритмами от равномерной Y_n . С другой стороны, эти случайные величины можно отличить схемами полиномиального размера: можно в качестве n-й схемы брать "характеристическую" схему X_n , т.е. которая выдает единицу тогда и только тогда, когда ввод является каким-то значением X_n (т.е. выдает 1 только для x_i , $i=1,\ldots,p(n)+1$).

Задача 7. Пусть S — множество, на котором G и G' отличаются. Тогда для схем $\{D_n\}$ имеем

$$\Delta_n := |\Pr\{D_n(G(s)) = 1\} - \Pr\{D_n(G'(s)) = 1\}| =$$

$$= |\Pr\{D_n(G(s)) = 1 | s \in S\} - \Pr\{D_n(G'(s)) = 1 | s \in S\}| \cdot \Pr\{s \in S\}.$$

В первом случае S состоит из слов с равным количеством единиц и нулей. Покажем, что G' в этом случае не является генератором псевдослучайных чисел.

По формуле Стирлинга $|S| = {|s| \choose |s|/2} \sim \sqrt{\frac{4}{\pi |s|}} \ 2^{|s|}$, откуда $\Pr\{s \in S\} \sim \frac{C}{\sqrt{|s|}} \ge \frac{1}{p(n)}$, где $C = \frac{2}{\sqrt{\pi}}$, $p(n) = \frac{|s|}{C}$.

С другой стороны, можно считать, что величина

$$\delta_n := \left| \Pr \{ D_n \big(G(s) \big) = 1 \big| s \in S \} - \Pr \{ D_n \big(G'(s) \big) = 1 \big| s \in S \} \right| =$$

$$= \left| \Pr \{ D_n \big(G(s) \big) = 1 \big| s \in S \} - p_n \right|$$

не меньше $\frac{1}{2}$ для бесконечно многих n (p_n — константа для всех s при фиксированном n). На самом деле, если это не так, то можно просто переопределить схему D_n на входе $0^{|G(s)|}$ на обратный бит. Для таким образом подобранного семейства схем и полинома p(.) получим, что $\Delta_n \geq 1/2p(n)$ для бесконечно многих n, что и требовалось доказать.

Во втором случае G' является псевдослучайным генератором. Действительно,

$$|S| = {|s| \choose |s|/3} \sim \frac{C}{\sqrt{|s|}} \cdot \frac{3^{|s|}}{2^{2|s|/3}}$$

$$\Pr\{s \in S\} = \frac{|S|}{2^{|s|}} \sim \frac{C}{\sqrt{|s|}} \cdot e^{|s| \ln 3 - \frac{5|s|}{3} \ln 2}.$$

Последнее стремится к нулю быстрее любого обратного полинома, а значит и $\Delta_n \leq \Pr\{s \in S\}$ тоже. Таким образом G' — псевдослучайный генератор.

Задача 8. Пусть $H:\{0,1\}^n \to \{0,1\}^{p(n)}, p(n) > n$ — генератор псевдослучайных чисел. Сначала построим псевдослучайный генератор G, для которого и G' генератор. Пусть G(xx) = H(x)H(H(x)) (т.е. конкатенация H(x) и H(H(x))), а на всех остальных аргументах (т.е. на аргументах не вида xx) G совпадает с H. Проверим, что G генератор. Для любых схем $\{D_n\}$ и равномерного x

$$\Pr\{D_n(G(x)) = 1\} =$$

$$= \Pr\{D_n(G(x)) = 1 | x \neq yy\} \cdot \Pr\{x \neq yy\} + \Pr\{D_n(G(x)) = 1 | x = yy\} \cdot \Pr\{x = yy\} =$$

$$= \Pr\{D_n(G(x)) = 1 | x \neq yy\} \cdot \left(1 - \frac{1}{2^{n/2}}\right) + \Pr\{D_n(G(x)) = 1 | x = yy\} \cdot \frac{1}{2^{n/2}}.$$

Значит, если $U_{p(n)}$ — равномерное распределение, то

$$\begin{aligned} \left| \Pr \{ D_n \big(G(x) \big) = 1 \} - \Pr \{ D_n \big(U_{p(n)} \big) = 1 \} \right| \leq \\ & \leq \left| \Pr \{ D_n \big(G(x) \big) = 1 \big| x \neq yy \} - \Pr \{ D_n \big(U_{p(n)} \big) = 1 \big| x \neq yy \} \right| \cdot \left(1 - \frac{1}{2^{n/2}} \right) + \\ & + \left| \Pr \{ D_n \big(G(x) \big) = 1 \big| x = yy \} - \Pr \{ D_n \big(U_{p(n)} \big) = 1 \big| x = yy \} \right| \cdot \frac{1}{2^{n/2}} \leq \\ & \leq \frac{1}{q(n)} \cdot \left(1 - \frac{1}{2^{n/2}} \right) + \frac{1}{2^{n/2}} \leq \frac{1}{q(n)}, \end{aligned}$$

где q(.) — полином, обратная которой ограничивает успех противника для генератора H. Таким образом, G — генератор. Проверим, что $G':\{0,1\}^n \to \{0,1\}^{p(n)+p(p(n))}$ тоже генератор. Действительно, H(x) распределена равномерно на $\{0,1\}^{p(n)}$ с точностью 1/q(n), а значит H(H(x)) распределена равномерно на $\{0,1\}^{p(n)+p(p(n))}$ с точностью

$$\frac{1}{q(n)} \cdot \left(1 - \frac{1}{q(n)}\right) + \frac{1}{q(n)} < \frac{2}{q(n)}.$$

Это значит, что G'(x) = H(x)H(H(x)) распределена равномерно на $\{0,1\}^{p(n)+p(p(n))}$ с точностью 3/q(n), что и требовалось доказать.

Теперь укажем генератор G, для которого G' не является псевдослучайным генератором. Определим G(xx) = H(x)H(x) и G(x) = H(x) для аргументов $x \neq yy$. Тогда, аналогично вышесказанному, G — псевдослучайный генератор (G(x) отличается от H(x) только на $2^{-n/2}$ доле аргументов). Но, очевидно, G' не является псевдослучайным генератором, так как значения G'(x) = H(x)H(x) составляют (слишком малую) $2^{p(n)}/2^{2p(n)} = 2^{-p(n)}$ долю множества $\{0,1\}^{2p(n)}$, т.е. G'(x) отличается от $U_{2p(n)}$ с точностью $1-2^{-p(n)}$.

Задача 1. а) Данное определение можно интерпретировать следующим образом: A — противник, $\{X_n\}_{n\in\mathbb{N}}$ — некий набор сообщений, $h(1^n,X_n)$ — любая информация про X_n , к которой противник A имеет доступ, а $f(1^n,X_n)$ — некая частная информация про X_n , в которой нуждается противник A. Неравенство в определении означает, что для любого взломщика A существует его симулятор A', который, не используя закодированное сообщение, добивается нужной информации почти с той же вероятностью, что и A'. Иными словами, для любого противника, вне зависимости из какого распределения берутся сообщения, вне зависимости к какой информации противник имеет доступ и вне зависимости от того, к какой информации он стремится, с большой вероятностью закодированное сообщение будет для него столь же полезным, сколько её длина.

б) Нужно показать, что при некотором подборе X_n , f, h, A никакой A' не сможет приближать A. Определим X_n как равномерное распределение на $\{x_n, y_n\}$, функцию f как $f(1^n, x_n) = 0$, $f(1^n, y_n) = 1$, а функцию h как независимую с f функцию, например константу. Пусть A любой алгоритм. Тогда для любого A' случайная величина $A'(n, h(1^n, X_n))$ не зависит от $f(1^n, X_n)$, которая в свою очередь равномерно распределена на $\{0, 1\}$. В таком случае

$$\Pr\{A'(n, h(1^n, X_n)) = f(1^n, X_n)\} \le \frac{1}{2}.$$

С другой стороны понятно, что для некоторого полинома $p(\cdot)$ верно, что $|E(1^n, X_n)| < p(n)$, но в то же время найдется $x \in \{0, 1\}^{p(n)}$ со свойством $\Pr\{|E(x, X_n)| < p(n)\} < 1/2$. Т.е. как A' бы не подобрал ключ, все равно с вероятностью больше 1/2 он не сможет симулировать поведение $A(n, E(1^n, X_n), h(1^n, X_n))$.

в) Пусть имеется изначальное определение алгоритмами. Тогда можно моделировать семейство схем $\{C_n\}$ с помощью алгоритма A с подсказкой $\alpha(n)$. В определении A заменим на $\{C_n\}$, f не поменяем, а h заменим на $\alpha(n)$. Тогда найденный A' даст семейство схем $\{C'_n\}$.

В обратную сторону. Выберем случай, при котором вероятность максимальна. Тогда больше не будет случайности, а неравенство в определении будет верным.

Задача 3. а) Сервер должен проверить, что $g^s = g^{r+xb} = zy^b$.

- б) Заметим, что нечестный клиент может ответить правильно только на один запрос b. На самом деле, пусть он смог ответить правильно разным запросам $b, b' \in \{0, 1\}$ (б.о.о. b = 1, b' = 0), т.е. он смог предъявить s, s' такие что $g^s = zg^{bx}$ и $g^{s'} = zg^{b'x}$ (равенства имеются в виду в \mathbb{Z}_n). Разделив одно равенство на другое получим $g^{s-s'} = g^{x(b-b')} = g^x$, или x = s s'. Отсюда следует, что не знающий x клиент может правильно ответить только одному запросу сервера, поскольку иначе, как мы показали, он в конце концов сможет вычислить x. Значит, вероятность ошибки протокола не больше 1/2.
- в, г) Докажем сразу более общий пункт г). Вспомним, что протокол с нулевым разглашением, если для любого верификатора V^* (возможно, нечестного), в нашем случае сервера, существует некий симулятор, который способен создать диалоги с тем же распределением, какое у диалогов между честным прувером (клиентом) и V^* .

Опишем симулятор. Он равномерно выбирает s и отгадывает какой запрос $b \in \{0,1\}$ будет отослан сервером V^* . На основе b он вычисляет изначальное сообщение z как $g^s y^{-b}$. Если V^*

отправит b как запрос, то симулятор будет иметь правильный ответ и получится, что он создал запрос с правильным распределением. Ясно, что симулятор будет успешным с вероятностью 1/2, ведь b принимает только два значения.

Задача 4. От противного, пусть существует эффективный алгоритм A, обращающий одностороннюю функцию $H:\{0,1\}^* \to \{0,1\}^n$. Тогда мы можем предъявить алгоритм B, который найдет коллизию с почти той же вероятностью и той же скоростью.

Рассмотрим только входы некоторой длины $l \ge n$. Заметим, что множество $\{0,1\}^l$ распадается на следующие 2^n классов по H:

$$C_h = \{x : x \in \{0, 1\}^l \land H(x) = h\}, \qquad h \in \{0, 1\}^n.$$

В среднем, если функция ведет себя случайно, каждый класс состоит из $k=2^{l-n}$ элементов. Но для нашей конкретней функции некоторые классы могут быть пусты в то время, как некоторые классы содержат больше элементов, чем другие.

Алгоритм B действует следующим образом:

- 1. Случайно берет $x \in \{0,1\}^l$ и вычисляет h = H(x);
- 2. С помощью A обращает h: x' = A(h);
- 3. Если $x \neq x'$, то возвращает (x, x'). Иначе возвращается к шагу 1.

Легко видеть, что на шаге 3 вероятность успеха $1-\frac{1}{k}$ (а это довольно много; можно повторить алгоритм несколько раз, чтобы получить нужную вероятность). Действительно, выбранный на первом шаге x принадлежит к C_h с вероятностью $\Pr\{C_h\} = |C_h|2^{-l}$. А значит, на шаге 3 вероятность неуспеха, т.е. x=x', есть $1/|C_h|$, учитывая равномерность выбора x и тот факт, что A не знает какой x из C_h выбран, ведь его мы кормим только h. Таким образом, в общем вероятность неуспеха

$$\sum_{h \in \{0,1\}^n} \Pr\{C_h\} \cdot \Pr\{\text{неуспех на } C_h\} = \sum_{h \in \{0,1\}^n} \frac{|C_n|}{2^l} \cdot \frac{1}{|C_h|} = 2^{n-l},$$

который меньше любого обратного полинома. Противоречие.

Задача 5. а) Пусть противник перехватил подпись s_i под сообщением i. Тогда он сможет подделать подпись s_i под всяким сообщением j < i применив i - j раз f:

$$s_j = f^{(m-j)}(x) = f^{(i-j)}(f^{(m-i)}(x)) = f^{(i-j)}(s_i).$$

- б) Для сообщений j > i противник не сможет подделать подписи s_j с существенной вероятностью, потому что в силу равенства $s_i = f^{(j-i)}(s_j)$ для этого нужно обратить одностороннюю перестановку $f^{(j-i)}$, которое не удастся с большой вероятностью.
- в) Можно в качестве подписи сообщения i брать конкатенацию $f^{(m-i)}(x)$ и $f^{(i)}(x)$, тогда как доказано выше, трудно будет обратить половину подписи. Тем самым, схема станет надежной.

Задача 7. а) Пусть k=2, т.е. есть генерал G и два полковника L_1, L_2 .

<u>Случай 1</u>: G — предатель. G может L_1 дать команду атаковать, а L_2 — отступать. Тогда если полковники честные, то они, согласно исполнительности, должны следовать команде генерала. Но, с другой стороны, по согласованности должны делать то же самое. Такое, конечно, невозможно.

<u>Случай 2</u>: L_2 — предатель. Рассмотрим следующий сценарий: G командует атаковать, L_2 отступает. Тогда, согласно исполнительности L_1 должен атаковать. С другой стороны, по согласованности L_1 обязан следовать за L_2 и отступать. Очевидно, такое невозможно.

б) в) Докажем сразу более общий пункт в). Рассмотрим следующий протокол BA(n,m) (Byzantine agreement), где n — число командиров (не считая генерала), а m — число предателей, причем $n \ge 3m$:

Определим какое-то значение по умолчанию v_{def} (например «Атаковать»), которое заменит не присланное сообщение генерала. Определим $v=\mathrm{maj}\{v_1,\ldots,v_n\}$, где v_i — сообщение, присланное генералом полковнику i.

Π ротокол BA(n,0) (нет предателей)

- 1. Генерал отправляет v всем полковникам;
- 2. Каждый полковник использует значение $v_{
 m def}$ в случае если не получил значения.

Протокол BA(n,m) (есть m предателей)

- 1. Генерал отправляет v всем полковникам;
- 2. *i*-й полковник
 - Использует значение v_i команда, полученное от генерала (или v_{def});
 - Отправляет v_i всем остальным n-1 полковникам согласно BA(n-1,m-1);
- 3. Для i-го полковникова
 - Пусть v_i значение, полученное из полковника j (или v_{def});
 - *i*-й полковник использует значение maj $\{v_1, ..., v_{n-1}\}$.

Докажем корректность протокола BA(n,m). Но сначала разберемся с вспомогательным утверждением:

Лемма. Для любых m, k и $n \ge 2m + k$ протокол BA(n, m) = BA(n, m, k) удовлетворяет условию исполнительности, если число предателей не превосходит m.

Доказательство. Индукция по k. В случае k=0 все очевидно, и генерал, и полковники честные, следовательно BA(n,m,0) сработает. Пусть BA(n,m,k-1) с k>0 удовлетворяет условию исполнительности. На шаге 1 честный генерал отправляет v всем n полковникам. На шаге 2 каждый полковник применяет BA(n,m,k-1). Имеем $n\geq 2m+k$, а значит и $n-1\geq 2m+(k-1)\geq 2m$. По предположению индукции каждый честный полковник получит $v_j=v$ из каждого честного полковника j. Поскольку число предателей не больше m и $n-1\geq 2m$, т.е. $m\leq (n-1)/2$, то большинство полковников честные. Значит у каждого честного полковника v и есть тај от полученных значений из оставшихся v полковников, и шаг v удовлетворяет условию исполнительности. Лемма доказана.

Докажем теперь, что BA(m) = BA(n,m) удовлетворяет условиям исполнительности и согласованности для любого m, если $n \ge 3m$ и количество предателей не больше m.

Снова индукция, но на этот раз по m. Случай m=0 ясен, нет предателей и все работает как положено. Пусть BA(m-1) удовлетворяет условиям исполнительности и согласованности для m>0. Докажем это и для BA(m).

<u>Случай 1</u>: генерал честный. Положив k=m в лемму получим, что BA(m) удовлетворяет условию исполнительности. Остается заметить, что согласованность следует из исполнительности в случае честного генерала.

Случай 2: генерал предатель. Есть не больше m предателей, а значит есть не больше m-1 предателей среди полковников. С другой стороны, количество полковников больше 3m-1>3(m-1). Значит можно применить предположение индукции о том, что BA(m-1) удовлетворяет исполнительности и согласованности. Следовательно, каждые два честных полковника получат то же значение v_j на шаге 3 (это следует из исполнительности, если один из полковников — j, и из согласованности — иначе). Таким образом, каждые два полковника получат один и тот же набор значений на шаге 3, а следовательно, у них совпадают тај от этих значений, доказав согласованность.