(Осень 2022)

Материал: основные геометрические понятия, гомотопии.

1.1. Пусть X – топологическое пространство, A – его подпространство. Деформационной ретракцией X на A в слабом смысле называется гомотопия $f_t: X \to X$, такая что $f_0 = \operatorname{Id}$, $f_1(X) = A$ и $f_t(A) = A$ при всех t. Покажите, что если X деформационно ретрагируется на A в слабом смысле, то включение $A \hookrightarrow X$ является гомотопической эквивалентностью.

- **1.2.** Покажите, что пространство X стягиваемо тогда и только тогда, когда любое непрерывное отображение $f: X \to Y$ (Y произвольно) гомотопно постоянному отображению. Также X стягиваемо тогда и только тогда, когда любое непрерывное отображение $f: Y \to X$ гомотопно постоянному.
- **1.3.** Покажите, что $f: X \to Y$ гомотопическая эквивалентность, если существуют отображения $g, h: Y \to X$, такие что $f \circ g = 1_Y, \ h \circ f = 1_X$.
- **1.4.** Пусть r_t^0, r_t^1 две деформационные ретракции пространства X на подпространство A. Покажите, что существует семейство деформационных ретракций $r_t^s: X \to X, \ 0 \le s \le 1$, непрерывное в смысле непрерывности отображения

$$X \times I \times I \to X, \ (x, s, t) \mapsto r_t^s(x)$$

и такое что $r_t^{s=0} = r_t^0$ и $r_t^{s=1} = r_t^1$.

1.5. Пусть X – топологическое пространство, θ – его замкнутая топология. Подмножество $Y\subseteq X$ называется k-замкнутым, если для всякого бикомпакта (хаусдорфова бикомпактного пространства) K и всякого непрерывного отображения $g:K\to X$ прообраз $g^{-1}Y$ замкнут в K. Совокупность $k\theta$ всех k-замкнутых подмножеств X образует замкнутую топологию, при этом всегда $\theta\subseteq k\theta$. Обозначим как kX множество X с топологией k-замкнутых подмножеств.

Пространство X называется k-пространством, если $\theta = k\theta$ (или, что то же, X = kX).

Пространство называется X слабо хаусдорфовым, если для всякого бикомпакта K и всякого непрерывного отображения $g:K\to X$ образ g(K) замкнут в X. Пространство X называется компактно порожеденным, если оно является слабо хаусдорфовым k-пространством.

- **А.** Докажите, что всякое хаусдорфово пространство слабо хаусдорфово. Проверьте, что слабая хаусдорфовость строго сильнее T_1 и строго слабее T_2 .
- ${\bf B.}$ Докажите, что всякое пространство, удовлетворяющее первой аксиоме счетности, является ${\bf k}$ -пространством.
- С. Докажите, что всякое локально бикомпактное хаусдорфово пространство является компактно порожденным пространством.
- **D.** Пусть X пространство, K бикомпакт. Тогда отображение $f: K \to X$ непрерывно тогда и только тогда, когда оно непрерывно как отображение $K \to kX$ (это немедленно следует из определения k-замкнутого множества). Выведите отсюда, что $k^2X = kX$ (kX всегда k-пространство).
- **Е.** Пусть X,Y пространства и X=kX. Тогда отображение $f:X\to Y$ непрерывно тогда и только тогда, когда оно непрерывно как отображение $X\to kY$.
- **F.** Пусть X k-пространство, Y пространство. Тогда отображение $f: X \to Y$ непрерывно тогда и только тогда, когда для всякого бикомпакта K и всякого непрерывного отображения $g: K \to X$ непрерывно отображение $f \circ g$.
- **G.** Если X k-пространство, а E отношение эквивалентности на множества X, то факторпространство Y = X/E также k-пространство.
- **H.** Если пространства $\{X_{\alpha}, \alpha \in \mathfrak{A}\}$ являются k-пространствами, то k-пространством также будет их дизъюнктное объединение $X = \sqcup_{\alpha} X_{\alpha}$.

I. Пусть семейство $\{X_{\alpha}, \alpha \in \mathfrak{A}\}$ состоит из k-пространств. Тогда их тихоновское произведение не является, вообще говоря, k-пространством. Однако справедливо следующее: все проекции

$$p_{\alpha}: k(\prod_{\alpha} X_{\alpha}) \to X_{\alpha}$$

непрерывны.

Проведите доказательство этого утверждения. Также докажите, что если Y – k-пространство, то отображение $f:Y\to k(\prod_{\alpha} X_{\alpha})$ непрерывно тогда и только тогда, когда непрерывны его композиции с проекциями $p_{\alpha}\circ f$.