Задача 1.1. Включение $A \hookrightarrow X$ обозначим через i. Нужно показать, что существует $g: X \to A$ такое, что $gi \simeq \mathrm{Id}_A$ и $ig \simeq \mathrm{Id}_X$. Заметим, что можно положить $g = f_1$. Действительно, $gi = f_1i: A \to A \simeq \mathrm{Id}_A$, так как отображение

$$(x,t) \mapsto f_t i(x) = f_t|_A(x)$$

непрерывно в силу того, что f гомотопия и i непрерывна, поэтому $f_0i=f_0|_A=\operatorname{Id}_A.$

Теперь рассмотрим $ig=if_1:X\to X$. Пусть $i_1:A\to X$ — естественное включение. Определим $g_t\coloneqq f_t\circ i_1:A\to X$. Тогда $g_1:A\to X$ и $g_0=\operatorname{Id}_X$. Определим гомотопию

$$G: A \times I \to X$$
, $(x, t) \mapsto g_t(x)$.

Имеем $f_1(X) = A$ и $f_t(A) = A$ для всех $t \in I$, следовательно $g_t(A) = A$ для всех $t \in I$. Это означает, что G можно естественным образом непрерывно продолжить до $G: X \times I \to A$, которое будет искомой гомотопией, что и требовалось.

Задача 1.2. Пусть любое отображение $f: X \to Y$ для всех Y гомотопно постоянному. Тогда это утверждение верно и для тождественного отображения $\mathrm{Id}_X: X \to X$, а значит X — стягиваема. Действительно, пусть $F: X \to \{p\}$ — постоянное отображение $x \mapsto p$ и пусть $G: \{p\} \to X$ — вложение некоторой точки $G(p) = x_0$. Имеем

$$F \circ G(p) = F(x_0) = p \implies F \circ G = \mathrm{Id}_{\{p\}},$$

$$G \circ F(x) = G(p) = x_0 \Longrightarrow G \circ F = \text{const.}$$

Поскольку $\mathrm{Id}_X \simeq \mathrm{const}$, то и $G \circ F \simeq \mathrm{Id}_X$. Таким образом X — стягиваема.

Аналогично, пусть любое отображение $f: Y \to X$ для всех Y гомотопно постоянному. Тогда это утверждение верно и для тождественного отображения, а значит X стягиваема по вышеприведенному рассуждению.

Пусть теперь X — стягиваема. Т.е. существует точка $p \in X$ и такая гомотопия $h: X \times I \to X$, что h_0 — тождественно на X и h_1 постоянна со значением p.

Если еще $f: X \to Y$, то $f \circ h: X \times I \to Y$ — гомотопия из f в постоянное отображение со значением f(p). Следовательно, f — гомотопно постоянному.

Если, с другой стороны, $f: Y \to X$, то отображение

$$Y \times I \to X$$
, $(y,t) \mapsto h(f(y),t)$

— гомотопия из f в постоянное отображение со значением p. Следовательно, f — гомотопно постоянному.

Задача 1.3. Если $h \circ f \simeq \operatorname{Id}_X$ и $f \circ g \simeq \operatorname{Id}_Y$, то $g \simeq h \circ f \circ g \simeq h$. Следовательно, $g \circ f \simeq h \circ f \simeq \operatorname{Id}_X$. С другой стороны, по условию $f \circ g \simeq \operatorname{Id}_Y$, а значит g является и левым, и правым обратным к f. Таким образом, f — гомотопическая эквивалентность.

Задача 1.4. Будем искать r_t^s в виде $r_{f(s,t)}^0 \circ r_{g(s,t)}^1$. Нам нужно гарантировать следующие условия:

• $r_0^s = id$; это условие выполнится, если f(s, 0) = g(s, 0) = 0;

- $r_t^S|_{s=1}=r_t^1$; выполнится, если f(1,t)=0; $r_t^S|_{s=0}=r_t^0$; выполнится, если g(0,t)=0; $r_1^S(X)=A$; выполнится, если f(s,1)=1 \lor g(s,1)=1.

Например, для всякого $\varepsilon \in (0,1)$ подойдут непрерывные функции

$$f(s,t) = \begin{cases} t, & 0 \le s < \varepsilon \\ t \cdot \frac{1-s}{1-\varepsilon}, & \varepsilon \le s \le 1 \end{cases} \qquad g(s,t) = \begin{cases} t \cdot \frac{s}{\varepsilon}, & 0 \le s < \varepsilon \\ t, & \varepsilon \le s \le 1 \end{cases}.$$

Задача 2.1. А. Сначала заметим, что функтор h_- , определенный как $h_c \coloneqq \hom_{\mathcal{C}}(-,c)$, на самом деле является функтором $C \to \mathrm{PSh}(C)$. Т.е. если $f \colon c \to d$ — стрелка в C, мы должны указать как построить естественное преобразование $h_f \colon h_c \to h_d$. Нужно каждому объекту $e \in C$ сопоставить $h_f(e) \colon h_c(e) \to h_d(e)$. Достаточно положить

$$h_c(e) = \text{hom}_C(e, c), \quad h_d(e) = \text{hom}_C(e, d), \quad h_f(e) = \text{hom}_C(e, f -).$$

Чтобы доказать пункт **A** нужно построить взаимно обратные естественные преобразования $F \to \hom_{\mathsf{PSh}(C)}(h_-,F)$ и $\hom_{\mathsf{PSh}(C)}(h_-,F) \to F$.

Сначала разберемся с первым. Для $c \in C$ рассмотрим отображение

$$F(c) \to \operatorname{hom}_{\operatorname{PSh}(C)}(h_c, F), \quad x \mapsto \varphi_x : h_c \to F,$$

где на объекте d стрелка φ_c определена как

$$\varphi_c(d)$$
: hom_c $(d,c) \to F(d)$, $\varphi_c(d)(f) = F(f)(c)$.

Нетрудно проверить, что это естественное преобразование.

В качестве обратного преобразования определим для $c \in C$ отображение

$$hom_{PSh(C)}(h_c, F) \to F(c), \qquad \varphi \mapsto \varphi(c)(1_c),$$

где $\varphi(c)$: hom_C $(c,c) \to F(c)$.

Остается показать, что построенные отображения взаимно обратные. Естественное преобразование $\varphi \in \hom_{\mathcal{C}}(h_c,F)$ полностью определяется значением $y_c \coloneqq \varphi(c)(1_c)$. Для стрелки $f \in \hom_{\mathcal{C}}(d,c)$ диаграмма

$$\begin{array}{ccc} \hom_{C}(c,c) & \xrightarrow{g \mapsto g \circ f} & \hom_{C}(d,c) \\ \\ \varphi(c) \downarrow & & \downarrow \varphi(d) \\ \\ F(c) & \xrightarrow{F(f)} & F(d) \end{array}$$

коммутативна. Значит, если $f \in \hom_{\mathcal{C}}(d,c)$, то $\varphi(d)(f) \in F(d)$, и этот элемент из F(d) определен значением $F(f)(y_c)$ в силу $f = 1_c \circ f$.

В. Вполне унивалентность вложения Y следует из того, что для любых $c,d \in C$

$$\hom_{\mathrm{PSh}(\mathcal{C})}(Y(c),Y(d))\cong \hom_{\mathcal{C}}(c,d).$$

Действительно, в утверждении пункта ${\bf A}$ подставив F=Y(d) получим изоморфизм

$$\hom_{\mathsf{PSh}(\mathcal{C})}\big(Y(c),Y(d)\big)\cong Y(c)(d)=\hom_{\mathcal{C}}(c,d).$$

Поскольку определенная в пункте **A** отображение $\hom_{\mathcal{C}}(c,d) \to \hom_{\mathcal{C}}(Y(c),Y(d))$ в точности есть Y, следует биективность Y.

С. Утверждение этого пункта есть следствие из предыдущего, поскольку вполне унивалентный функтор отражает изоморфизмы (т.е. два объекта изоморфны тогда и только тогда, когда их образы изоморфны).

D. Если терминальный объект — $(d, g: Y(d) \to F) \cong (d, g \in F(d))$, то $F \cong Y(d)$.

Утверждение следует из определения категории запятой и применения леммы Йонеды:

$$(Y \downarrow \Delta F) ((c, f \in F(c)), (d, f \in F(d))) \cong \{h \in \text{hom}_{\mathcal{C}}(c, d) : F(h)(g) = f\}.$$

(Отсюда $(Y \downarrow \Delta F) ((c, f \in F(c)), (d, f \in F(d)))$ — терминальный, в точности означает, что F(-)(f): $\hom_C(c, d) \to F(c)$ — биекция.)

Задача 2.2. **А**. Следует из теоремы пункта **В** (импликация $3 \Rightarrow 1$), поскольку K очевидно унивалентный, а также полный и существенно сюръективный по определению скелета.

В. $(2 \implies 1)$ Очевидно.

 $(1\Longrightarrow 3)$ Заметим, что $ST\cong I$ показывает, что каждый $c\in C$ имеет форму $c\cong S(Tc)$ для некоторого $d=Tc\in D$. Естественный изоморфизм $\psi\colon TS\cong I$ дает для каждого $f\colon d\to d'$ коммутативную диаграмму

$$\begin{array}{ccc}
TSd & \xrightarrow{\psi_d} & d \\
TSf \downarrow & & \downarrow f. \\
TSd' & \xrightarrow{\psi_{d'}} & d'
\end{array}$$

Отсюда $f=\psi_{d'}\circ TSf\circ \psi_d^{-1}$ и S — унивалентен. Аналогично из $ST\cong I$ получим, что и T унивалентен. Для полноты S рассмотрим любую $h\colon Sd\to Sd'$ и положим $f=\psi_{d'}\circ TS\circ \psi_d^{-1}$. Тогда диаграмма выше также коммутирует при замене Sf стрелкой h, а значит TSf=Th. Поскольку T унивалентен, Sf=h, и тем самым S — полон.

 $(3 \Longrightarrow 2)$ Нужно по S построить левый сопряженный T. Для каждого $c \in C$ можно выбрать по объекту $d_0 = T_0 c \in D$ и изоморфизм η_c :

$$\eta_c : c \cong S(T_0, c)$$

$$\searrow f \qquad \downarrow Sg, \qquad g : T_0 c \to d.$$

$$Sd$$

Для каждой стрелки $f: c \to Sd$ композиция $f \circ \eta_c^{-1}$ имеет форму Sg для некоторого g, поскольку S полон. Эта g единственна в силу унивалентности S. Иными словами, $f = Sg \circ \eta_c$ для единственного g, следовательно η_c универсален из c в S. Значит T_0 можно единственным образом превратить в функтор $T: C \to D$ так чтобы $\eta: I \to ST$ был естественным. Отсюда T есть левый сопряженный S единичным изоморфизмом η . В силу сопряженности $S\epsilon_d \cdot \eta_{Sd} = 1$ (нужно подставить c = Sd, f = 1 в диаграмме выше). Таким образом $S\epsilon_d = \eta_{Sd}^{-1}$ обратима. Поскольку S — вполне унивалентный, коединица ϵ_d тоже обратима. Следовательно, $\langle T, S; \eta, \epsilon \rangle: C \to D$ есть сопряженная эквивалентность.